Timing of Low Tidal Volume Ventilation and Intensive Care Unit Mortality in Acute Respiratory Distress Syndrome
A Prospective Cohort Study

Dale M. Needham1,2,3,4, Ting Yang4, Victor D. Dinglas1,2, Pedro A. Mendez-Tellez1,5, Carl Shanholz6, Jonathan E. Sevransky7, Roy G. Brower2, Peter J. Pronovost1,4,5, and Elizabeth Colantuoni1,8

1Outcomes After Critical Illness and Surgery Group, 2Division of Pulmonary and Critical Care Medicine, School of Medicine, 3Department of Physical Medicine and Rehabilitation, School of Medicine, 4Armstrong Institute for Patient Safety and Quality, 5Department of Anesthesiology and Critical Care Medicine, School of Medicine, and 8Department of Biostatistics, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland; 6Division of Pulmonary and Critical Care Medicine, University of Maryland, Baltimore, Maryland; and 7Division of Pulmonary, Allergy and Critical Care, Emory University School of Medicine, Atlanta, Georgia

Abstract

Rationale: Reducing tidal volume decreases mortality in acute respiratory distress syndrome (ARDS). However, the effect of the timing of low tidal volume ventilation is not well understood.

Objectives: To evaluate the association of intensive care unit (ICU) mortality with initial tidal volume and with tidal volume change over time.

Methods: Multivariable, time-varying Cox regression analysis of a multisite, prospective study of 482 patients with ARDS with 11,558 twice-daily tidal volume assessments (evaluated in milliliter per kilogram of predicted body weight [PBW]) and daily assessment of other mortality predictors.

Measurements and Main Results: An increase of 1 ml/kg PBW in initial tidal volume was associated with a 23% increase in ICU mortality risk (adjusted hazard ratio, 1.23; 95% confidence interval [CI], 1.06–1.44; P = 0.008). Moreover, a 1 ml/kg PBW increase in subsequent tidal volumes compared with the initial tidal volume was associated with a 15% increase in mortality risk (adjusted hazard ratio, 1.15; 95% CI, 1.02–1.29; P = 0.019). Compared with a prototypical patient receiving 8 days with a tidal volume of 6 ml/kg PBW, the absolute increase in ICU mortality (95% CI) of receiving 10 and 8 ml/kg PBW, respectively, across all 8 days was 7.2% (3.0–13.0%) and 2.7% (1.2–4.6%). In scenarios with variation in tidal volume over the 8-day period, mortality was higher when a larger volume was used earlier.

Conclusions: Higher tidal volumes shortly after ARDS onset were associated with a greater risk of ICU mortality compared with subsequent tidal volumes. Timely recognition of ARDS and adherence to low tidal volume ventilation is important for reducing mortality.

Clinical trial registered with www.clinicaltrials.gov (NCT 00300248).

Keywords: acute lung injury; tidal volume; artificial respiration; prospective studies

Randomized trials and metaanalyses have shown that use of low tidal volumes reduces mortality in patients with acute respiratory distress syndrome (ARDS) (1–4). However, as part of routine clinical care, patients may not consistently receive this evidence-based therapy in part because of barriers in the timely recognition of ARDS and in initiating and sustaining low tidal volume ventilator settings thereafter (5–11). The potential harm of delayed initiation of low tidal volume ventilation...
At a Glance Commentary

Scientific Knowledge on the Subject: Reducing tidal volume decreases mortality in mechanically ventilated patients with acute respiratory distress syndrome (ARDS); however, the effect of the timing of low tidal volume ventilation is not well understood.

What This Study Adds to the Field: In this multisite, prospective cohort study of patients with ARDS, higher tidal volumes shortly after ARDS onset were associated with an even greater risk of intensive care unit mortality compared with subsequent tidal volumes. Timely recognition of ARDS and prompt adherence to low tidal volume ventilation thereafter may be important for maximally reducing intensive care unit mortality in patients with ARDS.

Methods

On a daily basis, we prospectively screened patients for eligibility in this study, including detailed review of data in medical records and review of chest radiograph to enroll 520 patients with ARDS from 13 medical, surgical, and trauma ICUs at four teaching hospitals in Baltimore, Maryland. The ARDS inclusion criteria for enrollment were mechanical ventilation, \(\text{PaO}_2/\text{FiO}_2 \) ratio less than 300, and meeting the American-European Consensus Conference criteria that were in effect at the time of screening for this study (2004–2007). ARDS onset was defined as the time at which a patient met all inclusion criteria. Consistent with the more recent Berlin consensus meeting (19), we use the term ARDS, rather than acute lung injury, throughout this report. Neurologic specialty ICUs and patients with ARDS with primary neurologic disease or head trauma were not eligible for this study. Because the study was designed to evaluate the association of critical illness and ICU care, in particular lung protective mechanical ventilation, on patient’s long-term mortality and functional outcomes, the study had the following relevant exclusion criteria (Figure 1) at the onset of ARDS: (1) prior lung resection, (2) transfer from another hospital with preexisting ARDS of greater than 24 hours duration, (3) mechanically ventilated for more than 5 days before ARDS onset, (4) a physician order limiting the use of life-support therapies or preexisting comorbid illness with a life expectancy less than 6 months (e.g., metastatic cancer), (5) preexisting cognitive impairment or communication/language barriers, and (6) no fixed address.

Institutional review board approval was obtained from all participating sites with a waiver of informed consent granted for abstraction of preexisting data from the medical record. Written informed consent was obtained from survivors after they regained decision-making capacity (or from a proxy if a patient remained incapable of decision-making).

Assessment of Primary Exposure: Tidal Volume

The primary exposure was tidal volume received while mechanically ventilated, modeled as milliliter per kilogram of predicted body weight (PBW; calculated based on patient sex and height [2]). This time-varying exposure was recorded at 12-hour increments over the entire duration of mechanical ventilation and partitioned into two parts: the first available tidal volume after ARDS onset, and the time-varying change in current tidal volume relative to this initial tidal volume.

Baseline and Time-Varying Covariates

Our analysis adjusted for 29 baseline and time-varying covariates previously identified as potential confounders (5) and obtained from patients’ medical records. Baseline variables included age, sex, body mass index, Charlson comorbidity index (21), severity of illness within 24 hours of ICU admission (Acute Physiology And Chronic Health Evaluation II score [22]), ARDS risk factor (sepsis vs. other), ICU type (medical vs. surgical), patient location before ICU admission (e.g., emergency department), year of study enrolment, and study site identifier. Time-varying covariates were obtained either daily or twice-daily. Daily covariates included organ dysfunction (Sequential Organ Failure Assessment score [23]), sedation and delirium status (Richmond Agitation and Sedation Scale [24] and Confusion Assessment Method for the ICU [25], respectively), dose of systemic corticosteroids and neuromuscular blocking agents, and net fluid balance (total fluid input minus total fluid output). Twice-daily covariates represented mechanical ventilation parameters, including positive end-expiratory pressure, \(\text{PaO}_2/\text{FiO}_2 \), arterial pH, actual respiratory rate, use of high-frequency oscillatory and airway pressure release ventilation modes, and static compliance of the respiratory system (3).

Statistical Analysis

Descriptive statistics summarized the baseline and time-varying covariates for all subjects, with comparison between patient groups conducted using the Wilcoxon rank-sum and Fisher exact tests, as appropriate. As per the original clinical trial (1), a tidal volume of less than or equal to 6.5 ml/kg PBW was used to define
adherence to the low tidal volume goal of 6.0 ml/kg PBW. Kaplan-Meier plots with log-rank tests were used for unadjusted analyses of patient survival. A multivariable Cox regression model was used to evaluate death as a function of the time-varying tidal volume (primary exposure), after accounting for the duration of mechanical ventilation and the other 28 baseline and time-varying covariates as previously described, with the time-varying covariates modeled as cumulative averages. A potential time-varying effect of tidal volume on ICU mortality over the duration of a patient’s ICU stay was evaluated by including statistical interaction of the primary exposure (as previously described) with time (measured in 12-h intervals). Statistical interaction between the two parts of the primary exposure (i.e., initial tidal volume and change in current tidal volume relative to initial tidal volume) was also evaluated. As a sensitivity analysis, a Fine and Gray proportional subhazards regression model was fit, treating ICU discharge as a competing risk. This sensitivity analysis was conducted to confirm appropriateness of the Cox regression analysis assumption of noninformative censoring of ICU discharge in evaluating the outcome of ICU mortality.

We used standard statistical diagnostic procedures to evaluate the model. To assess the linearity assumption for continuous covariates, we plotted Martingale residuals against covariate values using a nonparametric LOESS-smoother. For each covariate, we also assessed the proportional hazards assumption via graphical displays of scaled Schoenfeld residuals and via performing individual tests of proportional hazards. We assessed the influence of individual observations by comparing the relative change in the estimated regression coefficients by deleting each observation, in turn, from the model, with no observation demonstrating high influence.

To illustrate the effects of the exposure-outcome relationship, the previously described Cox regression model was used to estimate the absolute difference in the cumulative risk of mortality at 8 days after ARDS onset, for a prototypical patient having median values for all continuous covariates and mode values for all binary covariates, with various profiles of tidal volume settings assumed during the ICU stay.

There were no missing data for patient-level characteristics. For the ventilator setting data (i.e., positive end-expiratory pressure, P_{aO_2}/F_{IO_2}, and respiratory rate), there were less than 0.2% missing for the cumulative averages used in the regression model. To impute the 10% missing data for plateau pressure (used to calculate static compliance of the respiratory system [26]), we used multiple imputation (with five imputed datasets), as previously described (5). As an a priori sensitivity analysis for this imputation, we repeated all analyses using a subset of the entire dataset that excluded ventilator settings with missing plateau pressure (analysis of “complete data”). Statistical significance was defined as a two-sided P less than 0.05. All statistical analyses were completed using R statistical software (version 3.0.3) (Foundation for Statistical Computing, Vienna, Austria) and STATA 12.1 (StataCorp, College Station, TX).

Results

Overall, prospective screening identified 754 patients meeting inclusion criteria, of whom 234 met exclusion criteria (Figure 1). Consequently, 520 patients were enrolled in the study, of whom 38 were excluded from the analysis, 35 (7%) had no eligible ventilator settings for this analysis (e.g., exclusive use of high-frequency oscillation or airway pressure release ventilation), and 3 (<1%) had missing data on height (required for calculating PBW for the primary exposure). Thus, 482 patients, with 11,558 total ventilator settings, were available for analysis. For the sensitivity analysis of complete data (see METHODS), 482 patients with 10,397 ventilator settings were available.

Tables 1 and 2 present patient characteristics and mechanical ventilation data by initial tidal volume of less than or equal to 6.5 versus greater than 6.5 ml/kg PBW ($n = 154 \ [32\%] \ vs. 328 \ [68\%]$) and by ICU mortality status. During their ICU

Figure 1. Flow of patients through primary analysis using imputation of missing data (n=482)

- **Met inclusion criteria (n=754)**
 - Met exclusion (n=234)
 - Prior lung resection (n=7)
 - Transfer from another hospital with pre-existing ARDS of >24 hours duration (n=32)
 - Mechanically ventilated for more than 5 days before ARDS onset (n=24)
 - Physician order limiting the use of life support therapies or pre-existing illness with a life expectancy <6 months (n=70)
 - Pre-existing cognitive impairment or communication/language barriers (n=48)
 - No fixed address or other reasons (n=53)
- **Mechanically ventilated patients with acute lung injury (n=520)**
 - Patients excluded from analysis (n=38):
 - No eligible ventilator settings for this analysis (n=35)
 - No data on height to permit evaluation of adherence to lung protective ventilation (n=3)
- **Patients available for primary analysis using imputation of missing data (n=482)**

ARDS = acute respiratory distress syndrome.
Table 1. Patient Characteristics by First Tidal Volume after ARDS and ICU Mortality Status

<table>
<thead>
<tr>
<th>First Tidal Volume</th>
<th>All Patients (n = 482)</th>
<th><6.5 ml/kg PBW (n = 154)</th>
<th>>6.5 ml/kg PBW (n = 328)</th>
<th>P Value</th>
<th>At ICU Discharge</th>
<th>Alive (n = 313)</th>
<th>Dead (n = 169)</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Median (IQR) age</td>
<td>53 (42–63)</td>
<td>51 (41–60)</td>
<td>53 (43–65)</td>
<td>0.015</td>
<td>51 (41–61)</td>
<td>55 (45–66)</td>
<td>0.033</td>
<td></td>
</tr>
<tr>
<td>Male sex</td>
<td>271 (56%)</td>
<td>119 (77%)</td>
<td>152 (46%)</td>
<td><0.001</td>
<td>181 (58%)</td>
<td>90 (53%)</td>
<td>0.338</td>
<td></td>
</tr>
<tr>
<td>Underweight (BMI</td>
<td>27 (6%)</td>
<td>10 (6%)</td>
<td>17 (5%)</td>
<td>0.533</td>
<td>15 (5%)</td>
<td>12 (7%)</td>
<td>0.305</td>
<td></td>
</tr>
<tr>
<td>Median (IQR) number of days of ventilation (all settings)</td>
<td>9 (5–17)</td>
<td>9 (5–17)</td>
<td>9 (5–17)</td>
<td>0.746</td>
<td>11 (7–19)</td>
<td>7 (3–13)</td>
<td><0.001</td>
<td></td>
</tr>
<tr>
<td>HFOV (ever)</td>
<td>57 (12%)</td>
<td>20 (13%)</td>
<td>37 (11%)</td>
<td>0.650</td>
<td>27 (9%)</td>
<td>30 (18%)</td>
<td>0.006</td>
<td></td>
</tr>
<tr>
<td>ARDS (ever)</td>
<td>62 (13%)</td>
<td>10 (6%)</td>
<td>52 (16%)</td>
<td>0.003</td>
<td>51 (16%)</td>
<td>11 (7%)</td>
<td>0.002</td>
<td></td>
</tr>
<tr>
<td>Median number of settings with HFOV, if any</td>
<td>5 (2–11)</td>
<td>4 (2–8)</td>
<td>7 (3–13)</td>
<td>0.382</td>
<td>8 (4–13)</td>
<td>4 (2–8)</td>
<td>0.082</td>
<td></td>
</tr>
<tr>
<td>Median number of settings with ARDS, if any</td>
<td>10 (5–18)</td>
<td>9 (5–19)</td>
<td>10 (5–17)</td>
<td>0.800</td>
<td>10 (6–17)</td>
<td>14 (2–32)</td>
<td>0.830</td>
<td></td>
</tr>
<tr>
<td>Median days of ventilation (all settings) (IQR)</td>
<td>9 (5–17)</td>
<td>9 (5–17)</td>
<td>9 (5–17)</td>
<td>0.746</td>
<td>11 (7–19)</td>
<td>7 (3–13)</td>
<td><0.001</td>
<td></td>
</tr>
<tr>
<td>ICU length of stay</td>
<td>13 (8–22)</td>
<td>13 (7–20)</td>
<td>14 (8–23)</td>
<td>0.474</td>
<td>16 (10–25)</td>
<td>8 (5–16)</td>
<td><0.001</td>
<td></td>
</tr>
</tbody>
</table>

Definition of abbreviations: APACHE II = Acute Physiology and Chronic Health Evaluation II; APRV = airway pressure release ventilation; ARDS = acute respiratory distress syndrome; HFOV = high-frequency oscillatory ventilation; ICU = intensive care unit; IQR = interquartile range; SOFA = Sequential Organ Failure Assessment.

Unadjusted survival analysis of patients with their first tidal volume after ARDS onset of greater than 6.5 ml/kg PBW demonstrated that a subsequent decrease (vs. increase) in tidal volume was associated with significantly improved survival (P = 0.008) that was not observed for patients with a first tidal volume of less than or equal to 6.5 ml/kg PBW (P = 0.446) (Figure 3). After adjusting for all covariates, an increase of 1 ml/kg PBW in initial tidal volume was associated with a 23% increase in the risk of ICU mortality (hazard ratio, 1.23; 95% confidence interval, 1.06–1.44; P = 0.008). Moreover, during
the time after the initial tidal volume setting, a 1 ml/kg PBW increase in tidal volume from the initial setting was associated with a 15% increase in risk of ICU mortality (hazard ratio, 1.15; 95% confidence interval, 1.02–1.29; \(P = 0.019 \)) (see Table E1 in the online supplement for full model results). There were no significant statistical interactions of the

| Table 2. Mechanical Ventilation Variables by First Tidal Volume after ARDS and ICU Mortality Status* |
|---------------------------------|---------------------------------|------------------|------------------|-----------------|
| All Ventilator Settings† \((n = 11,558) \) | First Tidal Volume \(\leq 6.5 \text{ ml/kg PBW} \) \((n = 3,366) \) | First Tidal Volume \(> 6.5 \text{ ml/kg PBW} \) \((n = 8,192) \) | At ICU Discharge \((n = 8,335) \) | At ICU Discharge \((n = 3,223) \) |
| Median (IQR) positive end-expiratory pressure, per 1 cm H\(_2\)O | 5 (5–10) | 5 (5–10) | 5 (5–10) | 5 (5–8) | 5 (5–10) | <0.001 |
| Median (IQR) \(\text{PaO}_2/\text{FiO}_2 \) | 199 (142–299) | 188 (118–253) | 199 (154–299) | 199 (160–299) | 176 (104–242) | <0.001 |
| Number of pH < 7.25 | 887 (11%) | 337 (13%) | 550 (10%) | 426 (7%) | 461 (20%) | <0.001 |
| Median (IQR) static compliance of respiratory system, per 10 ml/cm H\(_2\)O | 31 (22–40) | 31 (24–40) | 30 (21–40) | 32 (23–41) | 29 (21–37) | <0.001 |
| Median (IQR) respiratory rate, per 1 breath/min | 25 (20–33) | 30 (22–35) | 24 (19–31) | 24 (19–32) | 29 (22–35) | <0.001 |
| Median (IQR) tidal volume (ml/kg predicted body weight) | 6.6 (5.9–8.0) | 6.0 (5.7–6.6) | 7.0 (6.2–8.2) | 6.7 (6.0–8.0) | 6.6 (5.9–7.8) | 0.140 |

Definition of abbreviations: ARDS = acute respiratory distress syndrome; ICU = intensive care unit; IQR = interquartile range; PBW = predicted body weight.

†Proportions were calculated based on ventilator settings without missing or unknown data and may not add to 100% because of rounding. Missing or unknown data are as follows: positive end-expiratory pressure, 473 (4%); \(\text{PaO}_2/\text{FiO}_2 \), 81 (1%); pH, 3,527 (31%); static compliance of respiratory system, 1,161 (10%); respiratory rate, 480 (4%); and tidal volume, 1,441 (12%).

Figure 2. Timing and direction of first change in tidal volume from initial ventilator setting after ARDS onset. The numbers of patients with their first tidal volume after ARDS onset of \(< 6.5 \text{ and } > 6.5 \text{ ml/kg PBW}, respectively, were 154 and 328. The data represented by the dots and connecting line represent the proportion of patients with tidal volume \(< 6.5 \text{ ml/kg PBW}, calculated based on the number of patients at that point in time that were alive and receiving mechanical ventilation with a measurable tidal volume. In patients with their first tidal volume \(> 6.5 \text{ ml/kg, 17\% had no change in tidal volume or an increase in tidal volume over all subsequent mechanical ventilator settings, whereas 39\% had a decrease in the next ventilator setting with 78\% ever having a decrease in tidal volume over all subsequent mechanical ventilator settings. ARDS = acute respiratory distress syndrome; PBW = predicted body weight.
initial tidal volume with the change in current tidal volume relative to initial tidal volume (see Table E2), or of these two primary exposures variables with time (see Table E3). Sensitivity analyses evaluating ICU discharge as a competing risk (see Table E4) and evaluating missing data imputation, as previously described (see Table E1), demonstrated results consistent with the primary analysis.

The absolute risk difference in ICU mortality comparing various example profiles of initial and subsequent tidal volume settings for a prototypical patient are summarized in Table 3. Compared with a reference case of the prototypical patient receiving 8 days of mechanical ventilation with a tidal volume of 6 ml/kg PBW, there was an estimated absolute increase in mortality (95% confidence interval) of 7.2% (3.0–13.0%) and 2.7% (1.2–4.6%) for receiving 10 and 8 ml/kg PBW tidal volume across all 8 days. In tidal volume profiles with 4 days of 6 ml/kg PBW and 4 days of 10 ml/kg PBW, the estimated absolute increase in mortality was substantially greater when the 10 ml/kg PBW tidal volume was received in the first 4 days versus in the last 4 days of the 8-day mechanical ventilation period at 4.8% (1.9–8.5%) versus 2.0% (0.6–3.9%) (Table 3).

Discussion

In this multisite, prospective cohort study of patients with ARDS, higher tidal volumes shortly after ARDS onset were associated with an even greater risk of ICU mortality, compared with subsequent tidal volumes. Specifically, after adjusting for other covariates potentially associated with ICU mortality, a 1 ml/kg PBW increase in initial tidal volume or in a subsequent tidal volume setting was associated with a 23% and 15%, respectively, increase in the risk of ICU mortality. Thus, within the setting of routine clinical practice, timely adherence to the use of low tidal volumes for patients with ARDS is associated with improved survival.

In other aspects of care for critically ill patients, such as receipt of antibiotics in septic shock, timely and appropriate initial therapy reduces hospital mortality (27, 28). With respect to ARDS, randomized trials and metaanalyses have shown that use of low tidal volumes reduces mortality (1–4). Moreover, in a randomized trial of abdominal surgery patients mechanically ventilated in the operating room for an average of 5.5 hours, reduced tidal volumes (along with positive end-expiratory pressure and recruitment maneuvers) significantly decreased major postoperative complications (including acute respiratory failure requiring mechanical ventilation) and hospital length of stay (29). Similarly, our analysis demonstrated that earlier use of low tidal volumes was associated with improved ICU survival. Such findings may be explained by higher tidal volumes, even when used for only minutes to hours, overstretching alveoli, releasing inflammatory mediators systematically, and resulting in pulmonary and extrapulmonary organ dysfunction (12–17).

A single prior study, using data from ARDS Network clinical trials, did not find an association of hospital mortality with higher tidal volumes in the 36 to 48 hours preceding strict protocolized implementation of low tidal volume ventilation (18). Differences in study design may explain the discrepancy between our findings and the prior study. For instance, by evaluating patients enrolled in the ARDS Network trials, any patients dying after
ARDS onset, before enrollment, were excluded. Also, in the ARDS Network trials, all patients after enrollment were strictly managed with a low tidal volume protocol; however, in the usual care setting of our study, among those who did not have an initial tidal volume less than or equal to 6.5 ml/kg PBW, 44% never received tidal volumes less than or equal to 6.5 ml/kg PBW thereafter and only 7% always received tidal volumes less than or equal to 6.5 ml/kg PBW thereafter. Finally, there were differences in patient populations, with more stringent enrollment criteria excluding sicker patients in the ARDS Network trials versus our prospective cohort study.

The findings of this research draw attention to the need for early use of low tidal volume ventilation. In our study, approximately two-thirds of patients with ARDS had their initial tidal volume above 6.5 ml/kg PBW. To facilitate early use of low tidal volumes, timely recognition of ARDS is required along with communication of patient tidal volumes in terms of milliliter per kilogram PBW (7, 30). Moreover, given a high frequency of obesity, the calculation of tidal volume in milliliter per kilogram should be based on PBW, calculated using accurate height measurements rather than actual body weight. For mechanically ventilated patients, daily reevaluation for the onset of ARDS and the appropriateness of tidal volumes is important. Given the mortality benefit of low tidal volume ventilation and challenges in timely recognition of ARDS, there may be benefit for all mechanically ventilated patients of ICU-wide protocols that default to 6 ml/kg PBW, with a specific physician order required for use of higher tidal volumes (6, 12, 31, 32). Such an approach may play a role in preventing the development of ARDS in mechanically ventilated patients in addition to reducing mortality in those with ARDS (12). Moreover, having better integration between electronic medical records and mechanical ventilators may allow for improved setting of tidal volumes or creating alerts to notify clinicians of potentially harmful ventilator settings (33).

This study has potential limitations. First, this study was observational in design; hence, we cannot prove causation between the magnitude and timing of tidal volumes and ICU survival because there are both measured and unmeasured differences in patient groups with higher versus lower tidal volumes. However, a randomized trial evaluating delayed delivery of low tidal volume ventilation to patients with ARDS would not be ethical to conduct. Moreover, causality is plausible given the dose-response effect observed in this study, along with the consistency of our findings with both preclinical studies and randomized trials (12–17). Second, missing data on plateau pressure (used to calculate static compliance of the respiratory system [26]) have potential to bias study results; however, the primary analysis with multiple imputation of missing data and a secondary analysis of complete data showed similar results, which is reassuring. Third, only teaching hospitals from a single city were included in this research and there were exclusion criteria for patient enrollment which may limit the generalizability of these findings. However, four hospitals with 13 ICUs were included in the study, with substantial variability in routine medical care delivered, and the eligibility criteria were relatively limited compared with prior randomization controlled trials of low tidal volume ventilation, which aid in generalizability of our findings. Fourth, the data for this study are from 2004–2007. Since this study period, clinical practices with respect to adherence to low tidal volume ventilation and other aspects of ICU care may have changed and potentially modified these findings. However, the consistency of these results to both older and more recent preclinical and clinical data (12–17, 29) may support their continued importance to clinical care for patients with ARDS. Fifth, this study only collected ventilation data twice per day and did not capture instances in which there were more frequent adjustments to tidal volume settings, which may have understated our characterization of adherence to low tidal volume ventilation. Lastly, although a priori research has demonstrated the long-term survival benefit of lung protective ventilation (5), our current analysis evaluating the timing of low tidal volume ventilation only focused on ICU mortality. Hence, future research should evaluate long-term effects.

In conclusion, in this multisite, prospective cohort study of patients with ARDS, higher tidal volumes shortly after ARDS onset were associated with an even greater risk of ICU mortality compared with subsequent tidal volumes. Hence, timely recognition of ARDS and timely adherence to low tidal volume ventilation are important considerations for maximally improving survival for patients with ARDS.
References

